高一上册数学考试知识点整理

点击数:742 | 发布时间:2024-11-11 | 来源:www.fcglmw.com

    把容易题作对,难点就会变容易,多刷题,见识到更多的类型更多的题型,让答卷更简单。智学网为各位同学整理了《高一上册数学考试知识点整理》,期望对你的学习有所帮助!

    1.高一上册数学考试知识点整理 篇一

    求动点的轨迹方程的常用办法:求轨迹方程的办法有多种,常见的有直译法、概念法、有关点法、参数法和交轨法等。

    直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的办法一般叫做直译法。

    概念法:假如可以确定动点的轨迹满足某种已知曲线的概念,则可借助曲线的概念写出方程,这种求轨迹方程的办法叫做概念法。

    有关点法:用动点Q的坐标x,y表示有关点P的坐标x0、y0,然后代入点P的坐标所满足的曲线方程,整理化方便得到动点Q轨迹方程,这种求轨迹方程的办法叫做有关点法。

    参数法:当动点坐标x、y之间的直接关系很难找到时,总是先探寻x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的办法叫做参数法。

    交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的办法叫做交轨法。

    2.高一上册数学考试知识点整理 篇二

    二面角

    半平面:平面内的一条直线把这个平面分成两个部分,其中每个部分叫做半平面。

    二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。二面角的取值范围为[0°,180°]

    二面角的棱:这一条直线叫做二面角的棱。

    二面角的面:这两个半平面叫做二面角的面。

    二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。

    直二面角:平面角是直角的二面角叫做直二面角。

    3.高一上册数学考试知识点整理 篇三

    1.多面体的结构特点

    棱柱有两个面相互平行,其余各面都是平行四边形,每相邻两个四边形的公共边平行。

    正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形。

    棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形。

    正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥.特别地,各棱均相等的正三棱锥叫正四面体.反过来,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心。

    棱台可由平行于底面的平面截棱锥得到,其上下底面是相似多边形。

    2.旋转体的结构特点

    圆柱可以由矩形绕一边所在直线旋转一周得到.

    圆锥可以由直角三角形绕一条直角边所在直线旋转一周得到.

    圆台可以由直角梯形绕直角腰所在直线旋转一周或等腰梯形绕上下底面中心所在直线旋转半周得到,也可由平行于底面的平面截圆锥得到。

    球可以由半圆面绕直径旋转一周或圆面绕直径旋转半周得到。

    3.空间几何体的三视图

    空间几何体的三视图是用平行投影得到,这种投影下,与投影面平行的平面图形留下的影子,与平面图形的形状和大小是全等和相等的,三视图包含正视图、侧视图、俯瞰图。

    三视图的长度特点:“长对正,宽相等,高平齐”,即正视图和侧视图一样高,正视图和俯瞰图一样长,侧视图和俯瞰图一样宽.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,应该注意实、虚线的画法。

    4.空间几何体的直观图

    空间几何体的直观图常用斜二测画法来画,基本步骤是:

    画几何体的底面

    在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′=45°或135°,已知图形中平行于x轴、y轴的线段,在直观图中平行于x′轴、y′轴.已知图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度变为原来的一半。

    画几何体的高

    在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴,也垂直于x′O′y′平面,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度不变。

    4.高一上册数学考试知识点整理 篇四

    幂函数

    概念:

    形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

    概念域和值域:

    当a为不一样的数值时,幂函数的概念域的不同状况如下:假如a为任意实数,则函数的概念域为大于0的所有实数;假如a为负数,则x一定不可以为0,不过这个时候函数的概念域还需要根[据q的奇偶性来确定,即假如同时q为偶数,则x不可以小于0,这个时候函数的概念域为大于0的所有实数;假如同时q为奇数,则函数的概念域为不等于0的所有实数。当x为不一样的数值时,幂函数的值域的不同状况如下:在x大于0时,函数的值域一直大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域

    性质:

    对于a的取值为非零有理数,有必要分成几种状况来讨论各自的特质:

    第一大家了解假如a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),假如q是奇数,函数的概念域是R,假如q是偶数,函数的概念域是[0,+∞)。当指数n是负整数时,设a=—k,则x=1/(x^k),显然x≠0,函数的概念域是(—∞,0)∪(0,+∞)。因此可以看到x所遭到的限制源自两点,一是大概作为分母而不可以是0,一是大概在偶数次的根号下而不可以为负数,那样大家就能了解:

    排除去为0与负数两种可能,即对于x>0,则a可以是任意实数;

    排除去为0这种可能,即对于x<0和x>0的所有实数,q不可以是偶数;

    排除去为负数这种可能,即对于x为大于且等于0的所有实数,a就不可以是负数。

    5.高一上册数学考试知识点整理 篇五

    柱、锥、台、球的结构特点

    (1)棱柱:

    概念:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这类面所围成的几何体。

    分类:以底面多边形的边数作为分类的规范分为三棱柱、四棱柱、五棱柱等。

    表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。

    几何特点:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

    (2)棱锥

    概念:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这类面所围成的几何体。

    分类:以底面多边形的边数作为分类的规范分为三棱锥、四棱锥、五棱锥等

    表示:用各顶点字母,如五棱锥

    几何特点:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

    (3)棱台:

    概念:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。

    分类:以底面多边形的边数作为分类的规范分为三棱台、四棱台、五棱台等。

    表示:用各顶点字母,如五棱台

    几何特点:

    ①上下底面是一样的平行多边形

    ②侧面是梯形

    ③侧棱交于原棱锥的顶点

    (4)圆柱:

    概念:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。

    几何特点:

    ①底面是全等的圆;

    ②母线与轴平行;

    ③轴与底面圆的半径垂直;

    ④侧面展开图是一个矩形。

    (5)圆锥:

    概念:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。

    几何特点:

    ①底面是一个圆;

    ②母线交于圆锥的顶点;

    ③侧面展开图是一个扇形。

    (6)圆台:

    概念:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

    几何特点:

    ①上下底面是两个圆;

    ②侧面母线交于原圆锥的顶点;

    ③侧面展开图是一个弓形。

    (7)球体:

    概念:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

    几何特点:

    ①球的截面是圆;

    ②球面上任意一点到球心的距离等于半径。

  • THE END

    声明:本站部分内容均来自互联网,如不慎侵害的您的权益,请告知,我们将尽快删除。

专业院校

返回顶部

Copyright©2018-2024 中国人力资源网(https://www.dgzhou.com/)
All Rights Reserverd ICP备18037099号-1

  • 中国人力资源网微博

  • 中国人力资源网

首页

财经

建筑

医疗