学习这件事不在乎有无人告诉你,非常重要的是在于你一个人有没觉悟和恒心。任何科目学习技巧其实都是一样的,持续的记忆与训练,使常识刻在脑海里。智学网为各位同学整理了《高中一年级下册数学复习要点笔记》,期望对你的学习有所帮助!
1.高中一年级下册数学复习要点笔记 篇一
二面角
半平面:平面内的一条直线把这个平面分成两个部分,其中每个部分叫做半平面。
二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。二面角的取值范围为[0°,180°]
二面角的棱:这一条直线叫做二面角的棱。
二面角的面:这两个半平面叫做二面角的面。
二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。
直二面角:平面角是直角的二面角叫做直二面角。
2.高中一年级下册数学复习要点笔记 篇二
函数的奇偶性
若f是偶函数,那样f=f;
若f是奇函数,0在其概念域内,则f=0;
判断函数奇偶性可用概念的等价形式:f±f=0或≠0);
若所给函数的分析式较为复杂,应先化简,再判断其奇偶性;
奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;
3.高中一年级下册数学复习要点笔记 篇三
概念:
x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,大家规定它的倾斜角为0度。
范围:
倾斜角的取值范围是0°≤α<180°。
理解:
注意“两个方向”:直线向上的方向、x轴的正方向;
规定当直线和x轴平行或重合时,它的倾斜角为0度。
意义:
①直线的倾斜角,体现了直线对x轴正向的倾斜程度;
②在平面直角坐标系中,每一条直线都有一个确定的倾斜角;
③倾斜角相同,未必表示同一条直线。
公式:
k=tanα
k>0时α∈
k<0时α∈
k=0时α=0°
当α=90°时k没有
ax+by+c=0倾斜角为A,
则tanA=-a/b,
A=arctan
当a≠0时,
倾斜角为90度,即与X轴垂直
4.高中一年级下册数学复习要点笔记 篇四
复数概念
大家把形如a+bi的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。当虚部等于零时,这个复数可以视为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。复数域是实数域的代数闭包,也即任何复系数多项式在复数域中总有根。
复数表达式
虚数是与任何事物没联系的,是绝对的,所以符合的表达式为:
a=a+ia为实部,i为虚部
复数运算法则
加法法则:+=+i;
减法法则:-=+i;
乘法法则:·=+i;
除法法则:/=[/]+[/]i.
比如:[+]-[+i]=0,最后结果还是0,也就在数字中没复数的存在。[+]-[+i]=z是一个函数。
复数与几何
①几何形式
复数z=a+bi被复平面上的点z确定。这种形式使复数的问题可以借用图形来研究。也可反过来用复数的理论解决一些几何问题。
②向量形式
复数z=a+bi用一个以原点O为起点,点Z为终点的向量OZ表示。这种形式使复数四则运算得到适合的几何讲解。
③三角形式
复数z=a+bi化为三角形式
5.高中一年级下册数学复习要点笔记 篇五
1.抛物线是轴对称图形。对称轴为直线
x=-b/2a。
对称轴与抛物线的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴
2.抛物线有一个顶点P,坐标为
P/4a)
当-b/2a=0时,P在y轴上;当Δ=b’2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a一同决定对称轴的地方。
当a与b同号时,对称轴在y轴左;
当a与b异号时,对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于
6.抛物线与x轴交点个数
Δ=b’2-4ac>0时,抛物线与x轴有2个交点。
Δ=b’2-4ac=0时,抛物线与x轴有1个交点。
Δ=b’2-4ac<0时,抛物线与x轴没交点。X的取值是虚数