高中一年级是提升数学成绩的好机会,此时只须学会好数学常用要点,就可以为以后高考考试数学考试打好基础。智学网为各位同学整理了《高中二年级选择性必学四数学要点》,期望对你的学习有所帮助!
1.高中二年级选择性必学四数学要点 篇一
值域
察看法:直接察看函数的图像或函数的分析式来求函数的值域;
反表示法:针对分式的种类,把Y关于X的函数关系式化成X关于Y的函数关系式,由X的范围类似求Y的范围。
配办法:针对二次函数的种类,依据二次函数图像的性质来确定函数的值域,注意概念域的范围。
代换法:作变量代换,针对根式的题型,转化成二次函数的种类。
2.高中二年级选择性必学四数学要点 篇二
函数的定义
函数的定义:设A、B是非空的数集,假如根据某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f和它对应,那样就称f:A---B为从集合A到集合B的一个函数.记作:y=f,x∈A.
其中,x叫做自变量,x的取值范围A叫做函数的概念域;
与x的值相对应的y值叫做函数值,函数值的集合{f|x∈A}叫做函数的值域.
函数的三要点:概念域、值域、对应法则
函数的表示办法:
分析法:明确函数的概念域
图想像:确定函数图像是不是连线,函数的图像可以是连续的曲线、直线、折线、离散的点等等。
列表法:选取的自变量要有代表性,可以反应概念域的特点。
3.高中二年级选择性必学四数学要点 篇三
复数的定义:
形如a+bi的数叫复数,其中i叫做虚数单位。全体复数所成的集合叫做复数集,用字母C表示。
复数的表示:
复数一般用字母z表示,即z=a+bi,这一表示形式叫做复数的代数形式,其中a叫复数的实部,b叫复数的虚部。
复数的几何意义:
复平面、实轴、虚轴:
点Z的横坐标是a,纵坐标是b,复数z=a+bi可用点Z表示,这个打造了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴。显然,实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数
复数的几何意义:复数集C和复平面内所有些点所成的集合是一一对应关系,即
这是由于,每个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每个点,有惟一的一个复数和它对应。
这就是复数的一种几何意义,也就是复数的另一种表示办法,即几何表示办法。
复数的模:
复数z=a+bi在复平面上对应的点Z到原点的距离叫复数的模,记为|Z|,即|Z|=
虚数单位i:
它的平方等于-1,即i2=-1;
实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立
i与-1的关系:i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i。
i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。
复数模的性质:
复数与实数、虚数、纯虚数及0的关系:
对于复数a+bi,当且仅当b=0时,复数a+bi是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0。
4.高中二年级选择性必学四数学要点 篇四
复合函数概念域
若函数y=f的概念域是B,u=g的概念域是A,则复合函数y=f[g]的概念域是D={x|x∈A,且g∈B}综合考虑各部分的x的取值范围,取他们的交集。
求函数的概念域主要应考虑以下几个方面:
⑴当为整式或奇次根式时,R的值域;
⑵当为偶次根式时,被开方数不小于0;
⑶当为分式时,分母不为0;当分母是偶次根式时,被开方数大于0;
⑷当为指数式时,对零指数幂或负整数指数幂,底不为0。
⑸当是由一些基本函数通过四则运算结合而成的,它的概念域应是使各部分都有意义的自变量的值组成的集合,即求各部分概念域集合的交集。
⑹分段函数的概念域是各段上自变量的取值集合的并集。
⑺由实质问题打造的函数,除去要考虑使分析式有意义外,还要考虑实质意义对自变量的需要
⑻对于含参数字母的函数,求概念域时一般要对字母的取值状况进行分类讨论,并应该注意函数的概念域为非空集合。
⑼对数函数的真数需要大于零,底数大于零且不等于1。
⑽三角函数中的切割函数应该注意对角变量的限制。
5.高中二年级选择性必学四数学要点 篇五
函数的单调性、奇偶性、周期性
单调性:概念:注意概念是相对与某个具体的区间而言。
断定办法有:概念法
导数法
复合函数法和图像法。
应用:比较大小,证明不等式,解不等式。
奇偶性:
概念:注意区间是不是关于原点对称,比较f与f的关系。f-f=0f=ff为偶函数;
f+f=0f=-ff为奇函数。
辨别办法:概念法,图像法,复合函数法
应用:把函数值进行转化求解。
周期性:概念:若函数f对概念域内的任意x满足:f=f,则T为函数f的周期。
其他:若函数f对概念域内的任意x满足:f=f,则2a为函数f的周期.
应用:求函数值和某个区间上的函数分析式。