高三数学上册要点

点击数:695 | 发布时间:2025-01-25 | 来源:www.tspmpb.com

    高中三年级学生非常快就会面临继续学业或事业的选择。面对要紧的生活选择,是不是考虑了解了?这对于没社会经验的学生来讲,无疑是个困难的选择。怎么样度过这要紧又紧张的一年,大家可以从提升学习效率来着手!智学网高中三年级频道为各位同学整理了《高三数学上册要点》,期望你好好学习,圆金色6月梦!

    1.高三数学上册要点


    不等关系

    感受在现实世界和日常存在着很多的不等关系,知道不等式的实质背景。

    一元二次不等式

    ①历程从实质情境中抽象出一元二次不等式模型的过程。

    ②通过函数图象知道一元二次不等式与相应函数、方程的联系。

    ③会解一元二次不等式,对给定的一元二次不等式,尝试设计求解的程序框图。

    二元一次不等式组与简单线性规划问题

    ①从实质情境中抽象出二元一次不等式组。

    ②知道二元一次不等式的几何意义,可以用平面地区表示二元一次不等式组。

    ③从实质情境中抽象出一些简单的二元线性规划问题,并能加以解决。

    基本不等式:

    ①探索并知道基本不等式的证明过程。

    ②会用基本不等式解决简单的值问题。

    2.高三数学上册要点


    1、圆柱体:

    表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)

    2、圆锥体:

    表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h为其高,

    3、正方体

    a—边长,S=6a2,V=a3

    4、长方体

    a—长,b—宽,c—高S=2(ab+ac+bc)V=abc

    5、棱柱

    S—底面积h—高V=Sh

    6、棱锥

    S—底面积h—高V=Sh/3

    7、棱台

    S1和S2—上、下底面积h—高V=h[S1+S2+(S1S2)^1/2]/3

    8、拟柱体

    S1—上底面积,S2—下底面积,S0—中截面积

    h—高,V=h(S1+S2+4S0)/6

    9、圆柱

    r—底半径,h—高,C—底面周长

    S底—底面积,S侧—侧面积,S表—表面积C=2πr

    S底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h

    10、空心圆柱

    R—外圆半径,r—内圆半径h—高V=πh(R^2—r^2)

    11、直圆锥

    r—底半径h—高V=πr^2h/3

    12、圆台

    r—上底半径,R—下底半径,h—高V=πh(R2+Rr+r2)/3

    13、球

    r—半径d—直径V=4/3πr^3=πd^3/6

    14、球缺

    h—球缺高,r—球半径,a—球缺底半径V=πh(3a2+h2)/6=πh2(3r—h)/3

    15、球台

    r1和r2—球台上、下底半径h—高V=πh[3(r12+r22)+h2]/6

    16、圆环体

    R—环体半径D—环体直径r—环体截面半径d—环体截面直径

    V=2π2Rr2=π2Dd2/4

    17、桶状体

    D—桶腹直径d—桶底直径h—桶高

    V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)

    V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)

    3.高三数学上册要点


    概念:

    形如y=x^a的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

    概念域和值域:

    当a为不一样的数值时,幂函数的概念域的不同状况如下:假如a为任意实数,则函数的概念域为大于0的所有实数;假如a为负数,则x一定不可以为0,不过这个时候函数的概念域还需要根[据q的奇偶性来确定,即假如同时q为偶数,则x不可以小于0,这个时候函数的概念域为大于0的所有实数;假如同时q为奇数,则函数的概念域为不等于0的所有实数。当x为不一样的数值时,幂函数的值域的不同状况如下:在x大于0时,函数的值域一直大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域。

    性质:

    对于a的取值为非零有理数,有必要分成几种状况来讨论各自的特质:

    第一大家了解假如a=p/q,q和p都是整数,则x^=q次根号,假如q是奇数,函数的概念域是R,假如q是偶数,函数的概念域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/,显然x≠0,函数的概念域是∪.因此可以看到x所遭到的限制源自两点,一是大概作为分母而不可以是0,一是大概在偶数次的根号下而不可以为负数,那样大家就能了解:

    排除去为0与负数两种可能,即对于x>0,则a可以是任意实数;

    排除去为0这种可能,即对于x

    排除去为负数这种可能,即对于x为大于且等于0的所有实数,a就不可以是负数。

    4.高三数学上册要点


    1.满足二元一次不等式的x和y的取值构成有序数对,称为二元一次不等式的一个解,所有如此的有序数对构成的集合称为二元一次不等式的解集。

    2.二元一次不等式的每个解作为点的坐标对应平面上的一个点,二元一次不等式的解集对应平面直角坐标系中的一个半平面。

    3.直线l:Ax+By+C=0把坐标平面划分成两部分,其中一部分对应二元一次不等式Ax+By+C>0,另一部分对应二元一次不等式Ax+By+C<0。

    4.已知平面地区,用不等式表示它,其办法是:在所有直线外任取一点),将它坐标代入Ax+By+C,判断正负就能确定相应不等式。

    5.一个二元一次不等式表示的平面地区是相应直线划分开的半个平面,一般用特殊点代入二元一次不等式检验就能断定,当直线不过原点时常选原点检验,当直线过原点时,常选或代入检验,二元一次不等式组表示的平面地区是它的每个不等式所表示的平面地区的公共部分,注意边界是实线还是虚线的意思。“线定界,点定域”。

    6.满足二元一次不等式的整数x和y的取值构成的有序数对,称为这个二元一次不等式的一个解。所有整数解对应的点称为整点,它们都在这个二元一次不等式表示的平面地区内。

    7.画二元一次不等式Ax+By+C≥0所表示的平面地区时,应把边界画成实线,画二元一次不等式Ax+By+C>0所表示的平面地区时,应把边界画成虚线。

    8.若点P与点P1在直线l:Ax+By+C=0的同侧,则Ax0+By0+C与Ax1+Byl+C符号相同;若点P与点P1在直线l:Ax+By+C=0的两侧,则Ax0+By0+C与Ax1+Byl+C符号相反。

    9.从实质问题中抽象出二元一次不等式的步骤是:

    依据题意,设出变量;

    剖析问题中的变量,并依据每个不等关系列出常量与变量x,y之间的不等式;

    把每个不等式连同变量x,y有意义的实质范围合在一块,组成不等式组。

    5.高三数学上册要点


    1.概念:

    用符号〉,=,〈号连接的式子叫不等式。

    2.性质:

    ①不等式的两边都加上或减去同一个整式,不等号方向不变。

    ②不等式的两边都乘以或者除以一个正数,不等号方向不变。

    ③不等式的两边都乘以或除以同一个负数,不等号方向相反。

    3.分类:

    ①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。

    ②一元一次不等式组:

    a.关于同一个未知数的几个一元一次不等式合在一块,就组成了一元一次不等式组。

    b.一元一次不等式组中每个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

    4.考试知识点:

    ①解一元一次不等式

    ②依据具体问题中的数目关系列不等式并解决简单实质问题

    ③用数轴表示一元一次不等式的解集

  • THE END

    声明:本站部分内容均来自互联网,如不慎侵害的您的权益,请告知,我们将尽快删除。

专业院校

返回顶部

Copyright©2018-2024 中国人力资源网(https://www.dgzhou.com/)
All Rights Reserverd ICP备18037099号-1

  • 中国人力资源网微博

  • 中国人力资源网

首页

财经

建筑

医疗